Marks | $1$ | $2$ | $3$ | $4$ | $5$ |
Number of students | $m + 2$ | $m - 1$ | $2m - 3$ | $m + 5$ | $3m - 4$ |
Marks, $x$ | Number of students, $f$ | $f * x$ |
$1$ | $m + 2$ | $1(m + 2)$ |
$2$ | $m - 1$ | $2(m - 1)$ |
$3$ | $2m - 3$ | $3(2m - 3)$ |
$4$ | $m + 5$ | $4(m + 5)$ |
$5$ | $3m - 4$ | $5(3m - 4)$ |
$\Sigma f = 8m - 1$ | $\Sigma fx = 28m - 9$ |
Marks, $x$ | Number of students, $f$ |
$1$ |
$m + 2$ $3 + 2$ $5$ means $1, 1, 1, 1, 1$ |
$2$ |
$m - 1$ $3 - 1$ $2$ means $2, 2$ |
$3$ |
$2m - 3$ $2(3) - 3$ $6 - 3$ $3$ means $3, 3, 3$ |
$4$ |
$m + 5$ $3 + 5$ $8$ means $4, 4, 4, 4, 4, 4, 4, 4$ |
$5$ |
$3m - 4$ $3(3) - 4$ $9 - 4$ $5$ means $5, 5, 5, 5, 5$ |
$\Sigma f$ $8m - 1$ $8(3) - 1$ $24 - 1$ $23$ means $\Sigma f = n = 23$ |
$a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ |
$7$ | $15$ | $17$ | $23$ | $34$ | $37$ | $42$ |
Number of children | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
Number of families | $3$ | $5$ | $7$ | $4$ | $3$ | $2$ |
Class Interval | Frequency |
---|---|
$60-64$ | $2$ |
$65-69$ | $3$ |
$70-74$ | $6$ |
$75-79$ | $11$ |
$80-84$ | $8$ |
$85-89$ | $7$ |
$90-94$ | $2$ |
$95-99$ | $1$ |
Class Interval, $x$ | Class Midpoint, $x_{mid}$ | Frequency, $f$ | $f * x_{mid}$ |
$60-64$ | $\dfrac{60 + 64}{2} = \dfrac{124}{2} = 62$ | $2$ | $124$ |
$65-69$ | $\dfrac{65 + 69}{2} = \dfrac{134}{2} = 67$ | $3$ | $201$ |
$70-74$ | $\dfrac{70 + 74}{2} = \dfrac{144}{2} = 72$ | $6$ | $432$ |
$75-79$ | $\dfrac{75 + 79}{2} = \dfrac{154}{2} = 77$ | $11$ | $847$ |
$80-84$ | $\dfrac{80 + 84}{2} = \dfrac{164}{2} = 82$ | $8$ | $656$ |
$85-89$ | $\dfrac{85 + 89}{2} = \dfrac{174}{2} = 87$ | $7$ | $609$ |
$90-94$ | $\dfrac{90 + 94}{2} = \dfrac{184}{2} = 92$ | $2$ | $184$ |
$95-99$ | $\dfrac{95 + 99}{2} = \dfrac{194}{2} = 97$ | $1$ | $97$ |
$\Sigma f = 40$ | $\Sigma fx_{mid} = 3150$ |
$x_{mid} - \bar{x}$ | $(x_{mid} - \bar{x})^2$ | $f * (x_{mid} - \bar{x})^2$ |
$62 - 78.75 = -16.75$ | $(-16.75)^2 = 280.5625$ | $2 * 280.5625 = 561.125$ |
$67 - 78.75 = -11.75$ | $(-11.75)^2 = 138.0625$ | $3 * 138.0625 = 414.1875$ |
$72 - 78.75 = -6.75$ | $(-6.75)^2 = 45.5625$ | $6 * 45.5625 = 273.375$ |
$77 - 78.75 = -1.75$ | $(-1.75)^2 = 3.0625$ | $11 * 3.0625 = 33.6875$ |
$82 - 78.75 = 3.25$ | $(3.25)^2 = 10.5625$ | $8 * 10.5625 = 84.5$ |
$87 - 78.75 = 8.25$ | $(8.25)^2 = 68.0625$ | $7 * 68.0625 = 476.4375$ |
$92 - 78.75 = 13.25$ | $(13.25)^2 = 175.5625$ | $2 * 175.5625 = 351.125$ |
$97 - 78.75 = 18.25$ | $(18.25)^2 = 333.0625$ | $1 * 333.0625 = 333.0625$ |
$\Sigma f * (x_{mid} - \bar{x})^2 = 2527.5$ |
$x_{mid}$ | $f$ | $f * x_{mid}$ | $(x_{mid})^2$ | $f * (x_{mid})^2$ |
$62$ | $2$ | $124$ | $3844$ | $7688$ |
$67$ | $3$ | $201$ | $4489$ | $13467$ |
$72$ | $6$ | $432$ | $5184$ | $31104$ |
$77$ | $11$ | $847$ | $5929$ | $65219$ |
$82$ | $8$ | $656$ | $6724$ | $53792$ |
$87$ | $7$ | $609$ | $7569$ | $52983$ |
$92$ | $2$ | $184$ | $8464$ | $16928$ |
$97$ | $1$ | $97$ | $9409$ | $9409$ |
$\Sigma f * x_{mid} = 3150$ | $\Sigma f * (x_{mid})^2 = 250590$ |
Mean | Median | Range | |
Maths | |||
Science |
Mean | Median | Range | |
Maths | $ Mean \\[3ex] = \dfrac{68 + 58 + 61 + 75 + 63}{5} \\[5ex] = \dfrac{325}{5} \\[5ex] = 65 $ |
Sorted in Ascending Order: 58, 61, 63, 68, 75 Median = 63 |
Maximum = 75 Minimum = 58 Range = 75 - 58 Range = 17 |
Science | $ Mean \\[3ex] = \dfrac{81 + 77 + 68 + 76}{4} \\[5ex] = \dfrac{302}{4} \\[5ex] = 75.5 $ |
Sorted in Ascending Order: 68, 76, 77, 81 $ Median \\[3ex] = \dfrac{76 + 77}{2} \\[5ex] = \dfrac{153}{2} \\[5ex] = 76.5 $ |
Maximum = 81 Minimum = 68 Range = 81 - 68 Range = 13 |
Age groups | Number |
---|---|
21 - 30 31 - 40 41 - 50 51 or older |
2,750 1,225 625 400 |
Moviegoer category | Number |
---|---|
Very often Often Sometimes Rarely |
830 1,650 2,320 200 |
Marks | $50 - 54$ | $55 - 59$ | $60 - 64$ | $65 - 69$ | $70 - 74$ | $75 - 79$ | $80 - 84$ | $85 - 89$ |
Frequency | $5$ | $15$ | $20$ | $28$ | $12$ | $9$ | $7$ | $4$ |
Using an assumed mean (AM) of $67$, calculate, correct to one decimal place, the:
(a.) mean;
(b.) standard deviation;
of the distribution.
Marks, $x$ | Frequency, $f$ | $x_{mid} = \dfrac{LCI + UCI}{2}$ | $D = x_{mid} - AM$ | $f * D$ |
---|---|---|---|---|
$50 - 54$ | $5$ | $\dfrac{50 + 54}{2} = \dfrac{104}{2} = 52$ | $52 - 67 = -15$ | $5(-15) = -75$ |
$55 - 59$ | $15$ | $\dfrac{55 + 59}{2} = \dfrac{114}{2} = 57$ | $57 - 67 = -10$ | $15(-10) = -150$ |
$60 - 64$ | $20$ | $\dfrac{60 + 64}{2} = \dfrac{124}{2} = 62$ | $62 - 67 = -5$ | $20(-5) = -100$ |
$65 - 69$ | $28$ | $\dfrac{65 + 69}{2} = \dfrac{134}{2} = 67$ | $67 - 67 = 0$ | $28(0) = 0$ |
$70 - 74$ | $12$ | $\dfrac{70 + 74}{2} = \dfrac{144}{2} = 72$ | $72 - 67 = 5$ | $12(5) = 60$ |
$75 - 79$ | $9$ | $\dfrac{75 + 79}{2} = \dfrac{154}{2} = 77$ | $77 - 67 = 10$ | $9(10) = 90$ |
$80 - 84$ | $7$ | $\dfrac{80 + 84}{2} = \dfrac{164}{2} = 82$ | $82 - 67 = 15$ | $7(15) = 105$ |
$85 - 89$ | $4$ | $\dfrac{85 + 89}{2} = \dfrac{174}{2} = 87$ | $87 - 67 = 20$ | $4(20) = 80$ |
$\Sigma f = 100$ | $\Sigma fD = 10$ |
$f$ | $D$ | $f * D$ | $D^2$ | $f * D^2$ |
---|---|---|---|---|
$5$ | $-15$ | $-75$ | $225$ | $1125$ |
$15$ | $-10$ | $-150$ | $100$ | $1500$ |
$20$ | $-5$ | $-100$ | $25$ | $500$ |
$28$ | $0$ | $0$ | $0$ | $0$ |
$12$ | $5$ | $60$ | $25$ | $300$ |
$9$ | $10$ | $90$ | $100$ | $900$ |
$7$ | $15$ | $105$ | $225$ | $1575$ |
$4$ | $20$ | $80$ | $400$ | $1600$ |
$\Sigma f = 100$ | $\Sigma fD = 10$ | $\Sigma fD^2 = 7500$ |
Movie | Domestic Gross ($ millions) |
---|---|
Spiderman (2002) | 602 |
Iron Man 3 (2013) | 434 |
Spiderman 3 (2007) | 423 |
Captain America: Civil War (2016) | 408 |
Guardians of the Galaxy Vol. 2 (2017) | 389 |
Iron Man (2008) | 384 |
Car companies | ||||
Age (in years) | A | B | C | Total |
16 - 25 26 - 45 46 - 60 |
16 54 65 |
24 48 23 |
40 53 12 |
80 155 100 |
Total | 135 | 95 | 105 | 335 |
hours, $x$ | number of students, $f$ | $f * x$ |
---|---|---|
$0$ | $2$ | $0$ |
$1$ | $5$ | $5$ |
$2$ | $6$ | $12$ |
$3$ | $4$ | $12$ |
$4$ | $2$ | $8$ |
$5$ | $1$ | $5$ |
$\Sigma f = 20$ | $\Sigma fx = 42$ |